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Birkhoff-Gustavson normal form and the semiclassical 
energies of a double pendulum 

M KAli and S S Kipp 
Depmment of Physics, The University of Lethbridge, Lethbridge. Albena TlK 3M4, Canada 

Received 3 September 1993 

Abstract. Although the double pendulum is a well known system, the literature is sparse 
with regard to the study of its full dynamical behaviour. As a simple conservative system 
that displays both ordered and chaotic motion, it poses an ineresling problem for the study 
of classidquantum correspondence. In this work, we p m n t  ils Bukhoff-Oustavson normal 
form and semiclassical energies obtained from the normal form. The Pad€ summation technique 
is used to re-sum ,she normal-form series. 

1. Introduction 

The familiar system of a double pendulum has gained some new attention in dealing with 
the manifestation of chaos in classical and quantum systems [l]. This system has a number 
of appealing features. For example, its dynamics has the full richness of classical nonlinear 
time evolution and yet it does not require an elaborate experimental setup [2] to observe this 
complex behaviour. Its observable chaotic motion has raised some questions that quantum 
mechanics does not seem to have clear answers for [l]. We feel that it is worthwhile to have 
a closer look at this system. As for its semiclassical and quantum mechanical treatments, 
the literature is almost non-existent. The problem with a quantum calculation of the double 
pendulum arises partly from the fact that there is no method known (to the authors) for 
its exact quantization. The momenta and coordinates remain coupled in a way that hinders 
unambiguous quantization. In this work, we present our results of the Birkhoff-Gustavson 
normal form [3] analysis of the system. This normal-form approach provides valuable 
classical, semiclassical and quantum mechanical information about dynamical systems near 
their equilibrium points [4]. A reliable quantization of the system should account for the 
limiting results obtainable from the normal form. 

2. The dynamical system 

We consider an idealized planar double pendulum with point masses ml and mz attached to 
two inextensible massless arms of lengths I 1  and 12. The system has two degrees of freedom 
and its Lagrangian in polar coordinates 6'1 and 02 (figure 1) takes the form 

L = l - V  

L L 

V=(ml+mz)gl l  (I-cos6'1)+m2gZz ( l -cos&) 
5 =time. 
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Figure 1. The double pendulum. 

Note that the time derivatives 01 and 42 are taken with respect to time t. It is convenient 
to use dimensionless quantities, and for this purpose, we scale the time t as 

I 
t = f i 1 1 t / & .  

This scaling gives a new dimensionless Lagrangian L = C/u, where a! has the dimension 
of energy. It is clear that L and 1: describe the same dynamics and we have 

L = T - V  

V = y [ ( l  + m) ( 1  - cos81) + ml(1 -cos&)] . 
Here m = mz/ml, 1 = 12/11, y = ml11 g / a ,  and g is the acceleration due to gravity. 
Without any loss of generality, we will use y = 1, which means that the total energy will 
be measured in units of mlllg.  Also, we note here, for the purposes of what is to follow, 
that the above corresponds to the scaling of R as A + f i l l  A with the frequencies 
of the uncoupled zeroth-order Hamiltonians scaling as w + m o .  The corresponding 
dimensionless classical Hamiltonian of the system is given by 

+y { ( 1 +  m) ( l  -cost+) + mI(1 -cosS2)] . 
For the normal-form analysis, we expand H about the equilibrium point El = 0, 0, = 0 in 
the following manner: 

where E is the perturbation expansion parameter (here we use E = 1). The expansion of H 
is straightforward [5] and the first few terms are given below: 
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m (3 m + 1)  pI2oz4 m1e26 +- 3 360 . + 
The above series in 01 and & for H does not converge if, in (2), the term m sin2(el -6) > 1. 
This problem will affect the convergence of the normal-form series as discussed in section 3. 
The zeroth-order Hamiltonian If0 is decoupled by the following canonical transformation: 

01 = a1 XI + a z X z  
Pi = {ai ( 1  + m )  +mladwl 2 1  + {az ( l+  m )  +mla4lozZ,  
pz=ml(ai  + l a 3 ) o 1 2 1 + m l ( a z + ~ l a 4 ) ~ Z L  

02 = a3 Xi +a,& 

q = P+ 2m1' - 21 + m2l2 + 2m21 + 1 + 2 m  + m2.  

The decoupled zeroth-order Hamiltonian then becomes equal to the sum of two independent 
harmonic oscillator Hamiltonians, and is written as 

For the normal-form analysis in the following section, all the perturbation expansion terms 
H,, are expressed in terms of the variables XI, X2, 21 and Z ,  which, in tun, are transformed 
to normal-form coordinates (X, 2) in section 3 by using (7). 

3. Birkhoff-Gustavson normal form 

The Birkhoff-Gustavson normal form is a canonical perturbation technique [6]. It is the 
classical analogue [7,8] of the quantum mechanical RayleighSchrodinger perturbation 
method, and it has been used in the past [4, 9-11] with considerable success in generating 
constants of motion and semiclassical energies of nonlinear systems. Since the normal-form 
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technique can provide valuable insight into the dynamics of systems near their equilibrium 
points, we employ it to study the double pendulum. The details of the method are available 
in the literature [7]. We present a brief description for the sake of completeness. For the 
Lie transform used in generating the normal-form series K ,  we define a generating function 
W a s  

M KAii  and S S Kipp 

W = C -  6” Wntl 
n! “=O 

which yields the recursion relation 

L j f = { f * W j J .  

Here ( A ,  B }  signifies the Poisson bracket of A and B.  By defining f”o = K,  and f$ = H,, 
we obtain from the recursion relation the normal-form series as 

The tirst few terms of the series are given explicitly as 
KO = Ho 
Ki = Hi + W O ,  Wil 
Kz = Hz + 2 IHl, wi 1 + W O ,  WZI + ( W O ,  w,1,w11. 

For convenience in determining the K,, we introduce the new coordinates (5,  q) such that 
the normal-form coordinates (X, Z) become 

and defining hi and h2 as 

we have 

KO = hi + h z .  

In terms of 61, h, V I ,  qz, the H, , Kn and Wn-l are homogeneous polynomials of degree 
2(n + 1). Our task now is to determine the W, and make sure that all the normal-form 
terms K .  satisfy the relation {KO,  K n ]  = 0. This task becomes remarkably simple if the 
above coordinate transformation is used, as can be seen from the following discussion. 

With the 5 ,  q coordinates, we have 

KO = 1 0 1  h vi + 1 0 2  h 1/2 

and, for any function f(t1. &, ql, qz), the Poisson bracket with KO is given by 

{KO.  f1= Di + W Z ~ )  f 
where 

Thus a monomial $c;qfq; is a simultaneous eigenfunction of the operators DI and Dz 
with eigenvalues p - /.L and U - w ,  respectively. It is therefore simple to decide whether 
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such a monomial belongs to the normal form. For this to be the case, the monomial must 
satisfy the relation 01 (p  - p) + 0~ (U -U) = 0. This is a definite computational advantage. 

For arbitrary I and m, the K, can be computed but the higher-order terms become too 
complicated to present in a short article. We report here only KO and K1 for arbitrary 
1 and m. We also report K through KS for the case m = 4, 1 = I as an example. 
The resonant and non-resonant cases behave differently and they are reported below under 
separate headings. We say that there is an n : m resonance if there exist integers n and m 
such that n 01 + m o z  = 0. 

3.1. Non-resonant n o d  form 

For arbitrary 1 and m, the first two terms of the normal-form expansion for the non-resonant 
case are obtained from (9) and are given as follows: 

KO = hi + hz 

) hiz 
la1 ma3 (a1 - a3)' m1as4 + (m + 1) a14 - 

.I=( 4 I6ol2 

) h z 2 .  
m / q 4  + (m + 1) az4 -( 1 6 y 2  

In (10). KO and Kt are polynomials in hl and hz. For all non-resonant cases, the K, are 
polynomials in hl and hz. However, this is not so in resonant cases, as discussed below. 

3.2. Resonant normal form 

For the double pendulum we have 1 < 01 and 0 < wz < 1. An example of a 2 : 1 resonance 
is the case when E =, 1, m = A. Similarly a 3 : 1 resonance can be obtained, for instance, 
by setting 1 = 1, m = 9 9' . ~~ 

.~ 

3.2.1. 2 : l  Resonance (01 = 2 02, wz = w). The KO and K1 terms are obtained from 
(IO) by substituting W I  = 2w and y = w. Both KO and K1 are polynomials in hl and 
hz. However, higher-order normal-form terms for 2: 1 resonances cannot be expressed as 
polynomials in hl and hz (see 3 : 1 resonance below). 

3.2.2. 3 :1  Resonance (wl = 3 y, y = 0). Unlike the non-resonant and 2:  1 resonant 
cases, the K1 term (as well as higher-order terms) for the 3 : 1 resonant case cannot be 
expressed as a polynomial in hl and hz. We present here only KI: 

(11) K1 [resonant] = K~[non-resonant] + ( f i  + Tz) 
where 

(a4 - uz) (3 a1 a42 - a4 a1 a2 + a4 a2 a3 - 3 azza3) wzml I 
16 

TI = 
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(I + m) uz3 mia3 Q~ -- 
48 48 

Tz - 
T3 = (xz'- 3ZzZ)X1 x, + (3Xz2 - 2.22) 21 2,. 

The KO and K1 (non-resonant) terms are obtained from (10) by substituting 01 = 3 OJ and 
0 2  = 0. 

An observation is in order here. If one substitutes X I  = sinel and xz = sin02 into 
the Lagrangian given in (l), then expands the corresponding Hamiltonian, one obtains a 
perturbation series in XI, xz and their conjugate momenta that agrees only in the zeroth- 
order term with the perturbation series of H given in section 2. This is so in the sense 
that the functional form of HO in (4) is exactly the same in either of the two sets of phase- 
space variables. The higher-order terms, on the other hand, differ for the two choices of 
coordinates. Thus, it is not obvious that the normal form resulting from such an alternate 
expansion will agree with that presented in this work. It is, however, curiously interesting 
to note that all the non-resonant normal forms that we have studied in this work are the 
same for both (XI. XZ. their conjugate momenta) and (Sl,SZ, PI, Pz) expansions of H.  

3.2.3. Normal form for the cme m = 4, I = i. In order to discuss the normal-form analysis 
in more detail, we consider the case m = 4, .i = 3 as an example. This is a non-resonant 
case and the series [SI through KS is given below: 

01 = 0.2920809626 x 10' 
K = h 1  +hz-0.4279744334~ lOoh:+0.1846153846~ lO-'hlhz 

wz =0.684741649 x IOo 

-0.6256335814 x 10-2h;+0.5499643632 x looh: 
f0.1015058476 x lO-'h2hi-0.2147505683 x 10-zh:hl 
-0.557988 1949 x 10-4h: -0.9813623019 x looh: 
-0.359 639009 x 1W' h: hz - 0.522 101 284 6 x 
-0.130589628 x 104h:hl +0.1053964459 x 

+0.3329498066 x 10-2h;h: -0,5735734302 x 10-4h;hi 
+0.7166339473 x 10-'hl hi+0.3435784892 x 10-*h: 

hi hf 

+0.2076128393 x 10'h~+0.1147341906 x l0Ohzht 

-0.488 821 2644 x 10' hf - 0.367441 241 6 x looh: hz 
-0.1344530728 x lO-'hfhi-0.1241454456 x 10-'h;h: 
+0.6847525815 x 104h$h: -0.3505383363 x 10-5h2hl 
f0.4117546914 x IO-'h: + 0.1X0127424 x 10'h: 

+0.2346743412 x 10-zh~h~+0.3626617104 x 10-3h:h; 
-0.5668091615 x lO?h~hi-0.3902085146 x 10-6h;hl 

+0.1203027794 x 101hzhf+0.5383450804x lO-'h:hi 

+0.3487798715 X 10-8h~-0.332610224~ lO*h; 
-0.402779 026 6 X IO' hz h: - 0.205 218 359 1 x 10' h: hf 

-0.151 286~9074 x lo-' h: h: f 0.257 871 5565 x ht h i  
-0.2464870355 x 10-3h:h~+0.1109292836 x 10-4hfh: 
-0.983 1484723 x lO"h1 hzf0.3137640767 x lO-'h; 
+0.9315965932 x 1O2h~f0.1375399289 x 10*h:hz 
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+0.7905734097 x 10°h;h: +OS385377195 x 10-lhihf 
+0.294 755 8406 x lo-' hi h: + 0.955 965 7605 x 
-0.5875282108.E x 10-4hgh: +0.1874613934 x 10-5h:hz 

1959 

hi  h: 

-0.327893713 x 10-7hlh~+0.7386338064 x 10-'0h;. (12) 

The growth in magnitudes of the coefficients in (12) indicates that the series will diverge 
when hi and hz are greater than some minimum values. However, by re-summing using 
techniques such as Pad6 approximations, one can obtain meaningful results from this 
divergent series, as described in the next section. 

4. Semiclassical energies of the double pendulum 

To obtain quantum energies for the double pendulum, one faces the old problem of correctly 
quantizing it. The non-separability of velocities and coordinates in the Lagrangian (1) 
and momenta and coordinates in the Hamiltonian (2) shows the difficulty in writing the 
Schradinger equation for the system. One may treat the double pendulum as a constrained 
system [12] and try to quantize it as such. However, the operator-ordering arbitrariness 
seems to persist and there is no assurance that the set of operator-ordered Hamiltonians 
will include the correct quantum Hamiltonian of the double pendulum. With our current 
knowledge of quantization, there always exists an element of faith in going from a classical 
to a quantum formalism for a dynamical system. Empirical support is needed for the validity 
of a quantizing procedure. In this work, we present semiclassical results which can be useful 
in efforts to arrive at the correct quantization of the double pendulum. 

To find the semiclassical energies, we diagonalize the normal-form series for K in 
the basis set of two harmonic oscillators described by the Hamiltonians hl and hz. The 
non-resonant case is very simple since the Hamiltonian K is a polynomial in hl and hz 
and hence diagonal in this basis set. For computing semiclassical energies, we use toms 
quantization [131 by replacing hl ,  hz and their powers with hol (nl + i), hoz(nz + 4) 
and their corresponding powers accordingly (note that the scalings of h and o are as 
given in section 2). Here nl and nz are non-negative integers. For arbitrary 1 and m 
the results through K1 can be obtained from (10). This quantization obviously excludes 
the non-commutativity of products of higher powers of the relevant quantum operators that 
one would expect to occur in an exact scheme of quantization. The quantum analogues 
[7, 111 of the classical Birkhoff-Gustavson normal form take account of operator ordering. 
However, these quantum analogues presume the existence of coordinate systems in which 
the original Hamiltonians are exactly quantizable. For the double pendulum, the authors 
are currently unaware of the existence of any such coordinate system. 

The resonant case is more complicated 171 because K cannot be expressed as a 
polynomial in hi and hz. In the presence of resonance, the matrix for K in the basis set 
of the two harmonic oscillators will have off-diagonal elements which should he evaluated 
(after using some operator ordering). 

In general, the Birkhoff-Gustavson normal-form series has one of the following 
characteristics [9, lo]. (i) It has small radii of convergence, (ii) it is divergent, or (iii) 
it is asymptotic. These limitations should not dissuade us from using the normal-form 
approach. By invoking the techniques of analytic continuation and/or re-summation of 
divergent and asymptotic series, one usually obtains valuable results from the normal-form 
technique. The series for the double pendulum is such a case, and so requires resummation 
to avoid divergencies in regions where it is able to provide meaningful results. To illustrate 
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Figure 2 The P o i n d  surface of section of the double pendulum for 81 = 0. 81 > 0, E = 
2. m = 4 .  1=1.25, y = l .  

this, we consider the particular case m = 4, 1 = ;, y = 1. For this example, it is clear 
from the surface of section (figure 2), that there is no large-scale chaos at energy E = 2. 
Our numerical results show that there is no such chaos for energies in the range 0 < E % 2. 
In these situations, the normal-form analysis provides useful information about the system. 
One of the problems with convergence of the present normal form lies in the divergence of 
the series for H in 81 and & as mentioned in section 2. The other convergence difficulty 
lies in the fact that the system is chaotic at larger energies (see also the comments in [lo] 
on the convergence of the Birkhoff-Gustavson normal form for an integrable system) and 
should not have a second constant of motion at these energies. Figure 3 shows large-scale 
chaos at energy E = 7. The existence of a normal-form series that converges and yields 
the values of H for all energies would imply integrability and hence no chaos. 

To re-sum our normal-form series, we have tried several multivariate Pad6 summation 
techniques [14]. The two-variate diagonal [ M ,  MI Pad& approximant scheme of Chisholm 
[15] has been the most satisfactory of all the algorithms that we have tried. The diagonal 
Pad6 approximants in hl ,  hl of the series for K (equation (12)) were computed. For the 
[5,5] approximant, we also computed the KS term. This [5,5] approximant is given in the 
appendix. The semiclassical energies were obtained by using in these approximants the torus 
quantization discussed above and the results are given in table 1. For the e n ~ e s  in table 1, 
we have chosen fi such that ?i 01 = 1. It is obvious that for smaller 2, there will be a larger 
number of energy levels below a given total energy for the system. It is also clear that for 
given n l ,  nz, the normal-form series and its Pad6 approximants will have better convergence 
for smaller 2. A full quantum calculation could be carried out for a given value of h and 
the ensuing results compared with those obtained through the normal-form approach. 



BirWloff-Gustavson n o m 1  form of double pendulum 1961 

Figure 3. The P o i n d  surface of section of the double pendulum for el = 0, 8,  > 0. E = 
7, m = 4, I = 1.25. y = 1. 

Table 1. Semiclassical energies of the double pendulum form = 4, 1 = $, y = 1. The enhies 
m two-variate [M. MI diagonal pad6 approximanls of the n o d - f o r m  series for K in hl  and 
hl.  The numbers have.bsen computed with hol = 1. hl = nl + 4 hz = (-/"I) (nz + $1. 

nl ,n2 [I. 11 [2* 21 P. 31 14.41 15, 51 

0.0 05300933030 0.5481882681 0,5492906013 0.5492489657 05492492680 
0.1 0.7663023567 0.7842073099 0.7851117370 0.785J967357 0.7851976897 
0,2 1.002184445 1.019414391 1.020254049 1.020314648 1.020315819 
1.0 1.033534622 1.192472329 1.224456722 1223986527 1.224015952, 
1.1 1.273610569 1.433610703 1.457494387 1,461692544 1.461752166 
1.2 1.513806018 1.673788253 1.696163575 1.698660465 1.698715051 
2.0 1.329016314 1.673763609 1.781410083 1.781905446 1.782055224 
2 , 1  1571807212 1.920273530 1.996805542 2.013546806 2.013803465 
2,2 1.814987951 2.165780637 2.237633851 2.247043987 2.247257231 

From table 1, we see that the Pad6 approximants converge well. Are these convergent 
Pad6 results in fact the semiclassical energies of the double pendulum? We believe that 
they are. Our support for this conviction is based on the following consideration. We 
numerically solved the equations of motion in the original polar coordinates for the energies 
quoted in table 1 and monitored the values of K and H as the system evolved. We observed 
that the values of the Pad6 re-summation for K always remained close to those of H, while 
the direct sum (12) diverged for most values of the energies considered. This implies that 
the Pad6 s u m  approximates H, while the direct sum fails to do so. 



1962 M K Ali and S S Kipp 

5. Approximate additional constants of motion 

The normal-form approach can be used to generate approximate constants of motion 
independent of the Hamiltonian. Discussions of these integrals of motion for resonant 
and non-resonant cases are available in the literature; see for example Gustavson [3] and 
KaluZa and Robnik [9]. For a two-degree of freedom system, the normal form K is an 
integrable Hamiltonian by construction. With regard to our non-resonant K, both hl and 
hz are constants of motion, while KO can be used as a constant of motion for both the 
resonant and non-resonant cases. Let Iy = fOy be a constant of motion in the normal-form 
coordinates (X, Z). We can transform I" to its image 1" = f," in the 'old' coordinates 
(K, 2). This inverse transformation can be carried out recursively by replacing (X, 2) 
with (X, 2) and using the following equation [16] instead of (7): 

(n - l)! k 
n-1 

Lm+lfn-m-l n > 1 k > O  
m=O m! (n - m - l)! 

where Lj f is defined as in (7). By employing this procedure we obtain a perturbation series 
for I ,  and, as is common with perturbation methods, the issue of its convergence needs to be 
addressed. Generally speaking, perturbation series so obtained invariably require appropriate 
re-summation to enlarge their domains of application. In section 4, we have used a two- 
variate Pad6 approximation (in hl and h2) to re-sum the normal-form series for K. For 
the double pendulum, I ,  is a function of four phase-space variables and a four-variate Pad6 
approximation, amongst other summation techniques, can be tried. Our main purpose here 
is not to report on the optimal summation method for the function under consideration, but 
to promote the spirit of resummation to extend the applicability of the results obtained 
from the normal-form approach. To this end, we consider a very simple-minded but general 
method. We write I ,  as a perturbation series in the parameter E :  

I" = C."tm (14) 
m=O 

where the coefficients of expansion, the t,, are the various perturbation terms independent 
of e.  We now work out a suitable [ M ,  NI Pad6 approximation in the single variable E ,  
and then finally set E = 1. It is clear that this technique is applicable to Hamiltonians of 
arbitrary degrees of freedom, both resonant and non-resonant cases. Given the simplicity 
of the method, the technique often works quite well and is worth trying. 

As an application of this resummation technique, we have transformed the non-resonant 
constant of motion hl to a function of the (X, 2) coordinates and then to another function 
of the coordinates 01,02, PI and P2 by inverting (5). The tm are homogeneous polynomials 
of order 2(m + 1). We have generated terms up to ts and have compared the results of the 
direct sum of (14) and its [Z, 31 Pad6 approximation in figures 4 and 5. The to and t1 terms 
at the surface of section (81 = 0 and 81 increasing) are given by 

tr, = 1.0949565828~~ +0.4794642590P12 - 0.8465250445Pi Pz +0.3736486284P22 
ti = 0.057496661 9OPz4 - 1.236708 871&2Z'z2 + 0.4607677190P12P2z 

-0.2669007148P1 Pz3 +0.09908585349Pi4+0.3728070834&4 
f2.742 758 2 1 10z2Pl P2 - 0.350 5 10 959 3 Pi Pz - 1 SO2 29 1 29W2P1 * . 

The condition of increasing 01 at the surface of section is satisfied by the inequality 
PI - 0.8 P2 cos(&) > 0, while PI is obtained in terms of 82 and PZ from the equation 
H = E .  A comparison of figures 2,4 and 5 clearly shows that the Pad6 sum, as compared 
with the direct sum. is valid for much wider areas of the surface of section. It should be 
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Figure 4. The level c w e s  on the surface of section at E = 2 for the approximate constant of 
motion 11 = h i ,  obtained by directly summing the series (14). through 15 ( E  = 1). Only the top 
part of the figure reproduces the exact results presented in figure 2. The cwes werc generated 
for values of the direct sum in the range 0-150. 

pointed out that although there is no large-scale chaos at E = 2, one finds locally chaotic 
regions in finer analysis, implying that there are broken ton in the exact case. One such 
region is the neighbourhood of the hyperbolic point 0, = 0.0, f2 = 3.12 in figure 2. 

6. Summary 

We have presented a Birkhoff-Gustavson normal-form analysis of the double pendulum for a 
better understanding of this familiar system. We have discussed the convergence problem of 
this normal-form series and have shown that Pad6 summation provides meaningful results for 
the energy. Using torus quantization and a two-variate diagonal Pad6 summation technique, 
we have then presented semiclassical energies for a particular non-resonant case. These 
energies provide a basis of comparison for attempts at properly quantizing this system. By 
computing an approximate constant of motion using a different Pad6 summation technique, 
we have illustrated that efforts expended to re-sum normal-form results extend their domains 
of application. 
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Fme 5. The level curves on the surface of section at E = 2 for the approxime constant of 
motion 11 = hl,  obtained f” [2,31 Pad6 approximation of (14). The Curves were generated 
for values of the appmximant lying in the range 0-4. The Pad-? appmximant clearly reproduces 
the exact results of K g w  2 to a much better degree. 

Appendix 

The [5,5] Pad6 approximant [5] is given by P/Q, where 

P = 0.7879460516502824 x 10’hi hz+0.8879833809521573 x 103hzhf 
f0.8680933031524884 x ldh~h~+0.4598473125006416 x 104h:hz 
t0.488668228821 1359 x 104h:hi - 0.842786098280772 1 x 1 0 z h ~ h l  
f0.671350232 191 471 8 x lo4 hz h: - 0.101 663 577 983 330 1 x lo4 h: hz 
+0.7499110277777487 x 104h:h: +0.4721827893523807 x 1 0 ° h ~ h ~  
+0.2388490116140016~ 104h2h: +0.1343538947547524 x 1vh;h:  
+0.211859513 1304134 x 104h~h~+0.108%98500665331 x 105h:hz 
f0.3729275970227661 x 10°hzhl+0.4387542452978782x lO’hih: 
-0.734 965 356701 5062 x lo3 hi h: + 0.517 339 852355 581 5 x lo5 hi h: 
+0.1679807103301018 x 102h:h:+0.4628353294166022 x lO’h42h: 
+0.290273191633141 x 105h~h~+0.110163023431 I032 x 104h:h: 
+0.354893920508162 x 1@h:h:+0.785 1260257724075 x lO4h;h? 
+0.790 324 153 533 5437 x lo3 h: h: + 0.213 808 155 987 3179 x 10’ h; 
+0.1703860832972282 x 10Zh: +0.7212960052823199 x 10’ h: 



Birkhoff-Gustavson normal form of double pendulum 

-0.2982077864042052 x 10-'h: -0.9280640300704388 x 10-3h; 
f0.146 386 082 151 427 5 x 10' hf + 0.132483 352 034 391 7 x 

1965 

hz 
f0.335845446587 1992 x 10'h: f hi + hz 

Q = lf0.8681675803636278 x l d h f  hz+0.4949625275743528 x 104h2h: 
-0.788445313647 1446 x I d h i h i  +OS347742937386135 x 104h:hz 
-0.9823752522102055 x ldh:h:+0.2717072897793476 x lO-'h;hi 
+0.409017163808099 x 104h2h~+0.1342899324443748 x 105h:h; 
-0.2521749334943805 x 104hih: +0.3677793303011247 x lO0h;hl 
+0.2155346195029231 x 103hzh:+0.1007379779543821 x 103h;h: 
-0.1648545364626107 x lo4 h:h; f 0.513 681 362 1352969 x 16 h: h: 
+0.2383872679288426 x 10-'h;hl f0.4377917556953324 x 105h;hf 
-0.1136139757645634 x 103h;h: + 0.1448336440393874 x lo4 h;h: 
+0.1384939673000775 x lO'h;h:+O.3899677347476874 x 104h;hf 
f0.3670986185899303 x 1@h:h: +0.1233124881929267 x 10Zh: hz 
f0.315 8773349184192 x 10'h;h: + 0.775411 341 2915402 x lo3 hi hi 
f0.3016638902944108 X 1O2h:h;+O.7640934486240238 x 10'hi 
f0.220064491801048 1 x 10°h2 - 0.283 881 8245954392 X 1O-'hi 
+0.1987397663369437 x l d h :  +0.1975876857405936 x 10'h: 
-0.1094444658283298 x 10-'h; f0.1238167357159496 x 10-3h; 
fO.6419786442740616~ 10'hf+0.7015589300391536 x 
+0.232687 782 645 944 7 x 10' h: 
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