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Birkhoff—-Gustavson normal form and the semiclassical
energies of a double pendulum

M K Ali and S 8 Kipp
Department of Physics, The University of Lethbridge, Lethbridge, Alberta TIK 3M4, Canada

Received 3 September 1993

Abstract. Although the double pendulum is a well known system, the literatore is sparse
with regard to the study of its full dynamical behaviour. As a simple conservative system
that displays both ordered and chaotic motion, it poses an interesting problem for the study
of classical-quantum comespondence, In this work, we present its Birkhoff-Gustavson normal
form and semiclassical energies obtained from the normal form. The Padé summation technique
is used to re-sum the normal-form series.

1. Introduction .

The familiar system of a double pendulum has gained some new attention in dealing with
the manifestation of chaos in classical and quantum systems [1]. This system has a number
of appealing features. For example, its dynamics has the full richness of classical nonlinear
time evolution and yet it does not require an elaborate experimental setup [2] to observe this
complex behaviour. Its observable chaotic motion has raised some questions that quantum
mechanics does not seem to have clear answers for [1]. We feel that it is worthwhile to have
a closer look at this system. As for its semiclassical and quantum mechanical treatments,
the literature is almost non-existent. The problem with a quantum calculation of the double
pendulum arises partly from' the fact that there is no method known (to the authors) for
its exact quantization. The momenta and coordinates remain coupled in a way that hinders
unambiguous quantization. In this work, we present our results of the Birkhoff-Gustavson
normal form [3] analysis of the system. This normal-form approach provides valuable
classical, semiclassical and quantum mechanical information about dynamical systems near
their equilibrium points [4]. A reliable quantization of the system should account for the
limiting results obtainable from the normal form.

2. The dynamical system

We consider an idealized planar double pendulum with point masses mz; and m attached to
two inextensible massless arms of lengths [y and I;. The system has two degrees of freedom
and its Lagrangian in polar coordinates ;. and &, (figure 1} takes the form

L=T-V

242 L7242 -
T = (ml +§2)ll 761 =+ m2122 62 +mal s élgz cos(6; —92)
Vo= (m; +m2) gly (1 —cosb)+mzgl (1 —coséy)
7 = time. -
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Figure 1. The double pendulum.

Note that the time derivatives 6, and &, are taken with respect to time 7. It is convenient
to use dimensionless quantities, and for this purpose, we scale the time Ir as

T =./mlt/Je. 7
This scaling gives a new dimensionless Lagrangian L = £/«, where o has the dimension
of energy. It is clear that L and £ describe the same dynamics and we have

L=T-V
. 2 :
1 262 ..
ro 0t ;ﬂ)@l 4 ’"32 2+ mi6,6; cos(d; — ) 0

V =y [(1 +m) (1 — cosé) +mi (1 - cos8y)] .

Here m = ma/my, ! = L/L, ¥y = mihg/a, and g is the acceleration due to gravity.
Without any loss of generality, we will use ¥ = 1, which means that the total energy will
be measured in units of ml1g. Also, we note here, for the purposes of what is to follow,
that the above corresponds to the scaling of & as & — /mad| % with the frequencies
of the uncoupled zeroth-order Hamiltonians scaling as w —> /g/li . The corresponding
dimensionless classical Hamiltonian of the system is given by

_ P}/2+ (14 m)PZ/(2mI®) — P Py cos(6) — &)/]
B 1+ m sin?(6; — 6;)
+y (1 +m)(1l —cosé)) + mI(l —cosér)}.

For the normal-form analysis, we expand H about the equilibrium point 8, =0, 6; =0in
the following manner: )

H )

H=
n=0
where ¢ is the perturbation expansion parameter (here we use € = 1). The expansion of H
is straightforward [5] and the first few terms are given below:

Pj (1 + m) P? _ AP + 1+ m)s? 4 mi6,*

3

%!

Bo=—-+—5¢ ] 2 2
_ 1+met (+metPt | (1+2m)8PP Py 6°mP?
B= 24 2P * 21 2 “)
2 (142 P P 1 82 Py>
+(1-I-r'i'i)zfﬂf’zf‘z _a+ m?fﬁz 1 2+9291mP12—( +"21)122 2

(1 +2m)6*P P, &'mP’  8'ml
27 2 C 24
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The above series in 6; and &; for H does not converge if, in (2), the term m sin®(g, —6;) > 1.
This problem will affect the convergence of the normal-form series as discussed in section 3.
The zeroth-order Hamiltonian Hy is decoupled by the following cancnical transformation:

h=a1 A ta A 0 =a3 A +ag Ao
Pr={a(I+m)+mias}w 21+ {ay (1 +m)+mlas}en 2,
Py=mi(ay +ilas)o Zy +ml{ay +lagyan 25

Jmaflw 32 Jﬁﬁwﬁm
=T a = = )
N+ 1Ygym? — 1 VmF1Yg4/1 — an?
a _ Nmtiver-1 a _V1+myl ~w?
NN RN NN N
o o YT I T /Y2 Jmrim I+ 1= jg+/2
1= =

, @
24/1 2 21
g=C+2mP -2 +mP+2mHU+1+2m+m?.
The decoupled zeroth-order Hamiltonian then becomes equal to the sum of two independent
harmonic oscillator Hamiltonians, and is written as

w
Bo=u+n  n== @E+2D rz=‘-";-(z§+x§). )

For the normal-form analysis in the following section, all the perturbation expansion terms
H), are expressed in terms of the variables A7, A2, 2 and Z; which, in turn, are transformed
to normal-form coordinates (X, Z) in section 3 by using (7).

3. Birkhoff-Gustavson normal form

The Birkhoff~Gustavson normal form is a canonical perturbation technique [6]. It is the
classical analogue [7,8] of the quantum mechanical Rayleigh-Schrodinger perturbation
method, and it has been used in the past [4, 9-11] with considerable success in generating
constants of motion and semiciassical energies of nonlinear systems. Since the normal-form
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technique can provide valuable insight into the dynamics of systems near their equilibrium
points, we employ it to study the double pendulum. The details of the method are available
in the literature [7]. We present a brief description for the sake of completeness. For the
Lie transform used in generating the normal-form series X, we define a generating function
W as

W=ZEH_WEE

1
=0 n:

which yields the recursion relation

k—1
n'— nl + Ly n—-m kzl, mz0

+1 "Z; m)‘ #1 fE o
L; f={f.W}.

Here {A, B} signifies the Poisson bracket of A and B. By defining % = X, and f%, = H,,
we obtain from the recursion relation the normal-form series as

¥ ¢
k=322 @®
bt !
The first few terms of the series are given explicitly as
Ko =Hy
Ky = Hy + {Hy, Wi} )

Ky = Hy + 2{H, Wi} + {Ho, Wa} -+ ({Hy, W1}, W1},
For convenience in determining the K, we introduce the new coordinates (£, #) such that
the normal~form coordinates (X, Z) become
§+in; L& +ny .
X =2—r—s Zi=—"—" =12 t=4+/—1
=T =T d V=
and defining £ and 52 as
) w
By =.2_1(z,2+x%) h2=-.2.%(z§+xg)
we have
Ky=h+hs.

In terms of &1, &2. m., 12, the H, , X, and W,_; are homogeneous polynomials of degree
2(n 4+ 1). Our task now is to determine the W, and make sure that al! the normal-form
terms K, satisfy the relation {Ko, K,} = 0. This task becomes remarkably simple if the
above coordinate transformation is used, as can be seen from the following discussion.
With the &, n coordinates, we have
Ko=taonbim+imban

and, for any function f(&;, &z, 1, 52), the Poisson bracket with Ky is given by
{Ko, fl=tlen Di+w2 D) f
where
3 8

— —E—
Vo o
Thus a monomial E{".*,—‘.“,’ ning is a simultaneous eigenfunction of the operators Dy and D,
with eigenvalues p — 1 and o — v, respectively, It is therefore simple to decide whether

Dy = J=12.
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such a monomial belongs to the normal form. For this to be the case, the monomial must
satisfy the relation @) (p - u) 4 @3 (o ~v) = 0. This is a definite computational advantage.

For arbitrary ! and m, the K, can be computed but the higher-order terms become too
complicated to present in a short article. 'We report here only Ky and K; for arbitrary
! and m. We also report K through Kg for the case m = 4, [ = % as an example.
The resonant and non-resonant cases behave differently and they are reported below under
separate headings. We say that there is an 7 :m resonance if there exist integers n and m
such that nay +man =0, '

3.1. Non-resonant normal form

For arbitrary / and rm, the first two terms of the normal-form expansion for the non-resonant
case are obtained from (9) and are given as follows:

Ko=h+h

f lay mas (a) — a3)2 mlas* + (m + 1) a? 2
Kl - - 3 hl
4 16&)]

i —aYo | —a)
+( aimaz (a4 — az)” oy -+ mas a; (a1 — as) wz) 1 B (10)

2&)2 2(.01

3 (mla32a42 +(m+1) a;zazz) Byt Imasas (as — a2)* By
4w 4

miag* + (m + D ag* iy
- 16 an? 2

In (10), Ky and K are polynomials in %7 and h,. For all non-resonant cases, the X, are
polynomials in #; and &3, However, this is not so in resonant cases, as discussed below.

3.2. Resonant normal form

For the double pendulum we have 1 < @ and 0 < w; £ 1. An example of a 2: 1 resonance
is the case when [ =1, m = 1_95' Similarly a 3: 1 resonance can be obtained, for instance,

: _ 16 .
by setting I =1, m = 3. - . R

3.2.1. 2:1 Resonance (wy = 2 wn, wy = w). The Ky and K; terms are obtained from
(10) by substituting @; = 2 and w; = . Both Ky and K are polynomials in 4; and
hy. However, higher-order normal-form terms for 2:1 resonances cannot be expressed as
polynomials in /; and A, (see 3:1 resonance below).

3.2.2. 3:1 Resonance () = 3 an, o2 = w). Unlike the non-resonant and 2:1 resonant
cases, the K| term (as well as higher-order terms) for the 3:1 resonant case cannot be
expressed as a polynomial in %, and #;. We present here only Ki:

K, [resonant] = K)[non-resonant] + (1 + o) Tz (11)

where

T
(a4 — @) (3a194° — sty ay + as az 03 — 3a3°az) w?mi

4 16
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e — (1+maya® miazas®
2= 48 48
Ty= (X" =32 X1 Xo 4+ (3X° ~ 2,)) 21 Z».

The Ky and K; (non-resonant) terms are obtained from (10} by substituting e = 3w and
@y = .

An observation is in order here. If one substitutes x; = sind; and x; = siné, mto
the Lagrangian given in (1), then expands the corresponding Hamiltonian, one obtains a
perturbation series in x;, x2 and their conjugaie momenta that agrees only in the zeroth-
order term with the perturbation series of X given in section 2. This is so in the sense
that the functional form of Hy in (4) is exactly the same in either of the two sets of phase-
space variables. The higher-order terms, on the other hand, differ for the two choices of
coordinates. Thus, it is not obvious that the normal form resulting from such an alternate
expansion will agree with that presented in this work. It is, however, curiously interesting
to note that all the non-resonant normal forms that we have studied in this work are the
same for both {x;, xp, their conjugate momenta) and (8, 62, P, P2} expansions of H.

3.2.3. Normal form for the case m =4, 1= %. In order to discuss the normal-form analysis

in more detail, we consider the case m = 4, [ = :f- as an example. This is a non-resonant
case and the series [5] through K; is given below:

w = 0.2920809626 x 10 @z = 0.684 741649 x 10°

K = hy -+ hy ~ 04279744334 x 10°h2 +0.184 6153846 x 1071 hy b2
—0.6256335814 x 1072 A3 + 0.549964 3632 x 10°43
+0.101 505 847 6 x 107! by 3 — 0.2147505683 x 1072 hZ hy
—0.557988 1949 x 10~* 13 — 0.981362301 9 x 10° 4}
—0.359639009 x 107 #3 hy —0.5221012846 x 1072 A2 A2
—0.130589 628 x 107" A3 by + 0.1053964459 x 107~ A}
+0.207 6128393 x 10' 2} +0.114734 1906 x 10° hp i}
+0.332949 8066 x 1072 A3 h] — 0.5735734302 x 10~* A3 n?
+0.716 6339473 x 1075 hy ki + 0.3435784892 % 1078 43
—0.488 8212644 x 10" kS — 0.367 4412416 x 10° A3 hy
~0.1344530728 x 107 b B2 — 0.124 1454456 x 107 B3 43
+0.684 7525815 x 10~ h3 2 — 0.350538 3363 x 105 A3 1
+0.4117546914 x 1077 4§ +-0.1240127424 x 10* 4]
+0.1203027794 x 10! Ay BS -+ 0.538 3450804 x 107! &3 42
+0.234 6743412 x 1072 K3 1] + 03626617104 x 103 3 R
—0.566 809 1615 x 107° h3 B3 — 0.390208 5146 x 1075 AS A,
+0.348 7798715 x 1078 1) — 0.332610224 x 10° i}
—0.4027790266 x 10! Az i) —0.205218359 1 x 10° A2 1§
—0.1512869074 x 107" #3 b7 + 0.257 8715565 x 107 1} nf
—0.246 4870355 x 10~ h} b3 + 0.110929 2836 x 10~* A2 1S
—0.983 1484723 x 1077 hy 43 + 03137640767 x 107 &
+0.9315965932 x 102 A% + 0.1375399289 x 10° K i,
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+0.790573 4097 x 10° A2 k] + 0.538 5377195 x 107! &3 AS

+0.294 755 8406 x 1072 k3 k3 + 09559657605 x 1072 hi 4

—0.587528 2108E x 107 AS k] + 0.187 4613934 x 1075 B3 1]
—0.327893713 x 1077 hy kS +0.738 6338064 x 1071043, C12)

The growth in magnitudes of the coefficients in (12) indicates that the series will diverge
when &; and A2 are greater than some minimum values. However, by re-summing using
techniques such as Padé approximations, one can obtain meaningful results from this
divergent series, as described in the next section.

4. Semiclassical energies'of the double pendulum

To obtain quantum energies for the double pendulum, one faces the old problem of correctly
quantizing it. The non-separability of velocities and coordinates in the Lagrangian (1)
and momenta and coordinates in the Hamiltonian (2) shows the difficulty in writing the
Schrodinger equation for the system. One may treat the double pendulum as a constrained
system [12] and try to quantize it as such. However, the operator-ordering arbitrariness
seems to persist and there is no assurance that the set of operator-ordered Hamiltonians
will include the correct quantum Hamiltonian of the double pendulum. With our cumrent
knowledge of quantization, there always exists an element of faith in going from a classical
to a quantum formalism for a dynamical system. Empirical support is needed for the validity
of a quantizing procedure. In this work, we present semiclassical results which can be useful
in efforts to arrive at the correct quantization of the double pendulum.

To find the semiclassical energies, we diagonalize the normal-form series for K in
the basis set of two harmonic oscillators described by the Hamiltonians #y and ks;. The
non-resonant case is very simple since the Hamiltonian K is a polynomial in k; and A,
and hence diagonal in this basis set. For computing semiclassical energies, we use torus
quantization [13] by replacing %y, ky and their powers with ey (m + %) fan(ng + %)
and their corresponding powers accordingly (note that the scalings of % and ¢ are as
given in section 2). Here n; and ny are non-negative integers. For arbitrary [ and m
the results through X; can be obtained from (10). This quantization obviously excludes
the non-commutativity of products of higher powers of the relevant quantum operators that
one would expect fo occur in an exact scheme of gquantization. The quantum analogues
[7, 11] of the classical Birkhoff-Gustavson normal form take account of operator ordering.
However, these quantum analogues presume the existence of coordinate systems in which
the original Hamiltonians are exactly quantizable. For the double pendulum, the authors
are currently unaware of the existence of any such coordinate system.

The resonant case is more complicated [7] because K cannot be expressed as a
polynomial in k) and #». In the presence of resonance, the matrix for K in the basis set
of the two harmonic oscillators will have off-diagonal elements which should be evaluated
(after using some operator ordering).

In general, the Birkhoff~Gustavson normal-form series has one of the following
characteristics [9,10]. (i) It has small radii of convergence, (ii) it is divergent, or (i)
it is asymptotic. These limitations should not dissuade us from using the normal-form
approach. By invoking the techniques of analytic continuation and/or re-summation of
divergent and asymptotic series, one usuaily obtains valuable results from the normal-form
technique. The series for the double pendulum is such a case, and so requires re-summation
to avoid divergencies in regions where it is able to provide meaningful results. To illustrate
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Figure 2. The Poincart surface of section of the double pendulum for ¢y =0, 6 > 0, E =
2, m=4, =125 y=1

this, we consider the particular case m = 4, [ = %, ¥ = 1. For this example, it is clear
from the surface of section (figure 2), that there is no large-scale chaos at energy E = 2.
Our numerical results show that there is no such chaos for energies in the range 0 £ E = 2.
In these situations, the normal-form analysis provides useful information about the system.
One of the problems with convergence of the present normal form lies in the divergence of
the series for H in #; and &; as mentioned in section 2. The other convergence difficulty
lies in the fact that the system is chaotic at larger energies (see also the comments in [10]
on the convergence of the Birkhoff-Gustavson normal form for an integrable system) and
should not have a second constant of motion at these energies. Figure 3 shows large-scale
chaos at energy £ = 7. The existence of a normal-form series that converges and yields
the values of H for all energies would imply integrability and hence no chaos.

To re-sum our normal-form series, we have wried several multivariate Padé summation
techniques [14]. The two-variate diagonal [M, M] Padé approximant scheme of Chisholm
[15] has been the most satisfactory of all the algorithms that we have tried. The diagonal
Padé approximants in h;, ko of the series for X (equation (12)) were computed. For the
[5, 5] approximant, we also computed the Ko term. This [5, 5] approximant is given in the
appendix. The semiclassical energies were obtained by using in these approximants the torus
quantization discussed above and the results are given in table 1. For the entries in table 1,
we have chosen 7 such that & ey = 1. It is obvious that for smaller %, there will be a larger
number of energy levels below a given total energy for the system. It is also clear that for
given 111, nz, the normal-form series and its Padé approximants will have better convergence
for smaller %. A full quantum calculation could be carried out for a given value of £ and
the ensuing results compared with those obtained through the normal-form approach.
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Figure 3. The Poincaré surface of section of the double pendulum for 6; =0, g >0 E=
T om=4[=125 y=1

Table 1. Semiclassical energies of the doable pendulum form =4, I = -3- y = L. The entries
are two-variate [A, M diagonal Padé approximants of the normal-form series for X in &y and
k2. The numbers have been computed with 2w =1, 1 =n) + % ky = (w2 /o) (2 + %)-

a,nz [L1] (2, 2] 3,31 [4.4] [5,5]

0.0 05300933030 0.5481882681 05492906013 05492489657 0.5492492680
0,1 07663023567 (.7842073099 0.7851117370 0.7851967357 0.78519768%7
0,2 1002184445 1.019414391 1.020254049 1.020314648 1.020315819
1,0  1.033534622 1.192472329 1224456722 1223986527 1224015952
11 1.273610569 1433610703 1457494387 1461692544 1461752166
1,2 1513806018 1.673788253 1.696163575 1.698660465 1.698715051
2.0 1329016314 1.673763609 1781410083 1.781905446 1.782055224
2,1 1571807212 1.920273530 1996805542 2.013546806 2.013803465
2,2 1.B14987951 2.165780637 2237633851 2247043987 2247257231

From table 1, we see that the Padé approximants converge well. Are these convergent
Padé results in fact the semiclassical energies of the double pendulum? We believe that
they are. Qur support for this conviction is based on the following consideration. We
numerically solved the equations of motion in the original polar coordinates for the energies
quoted in table 1 and monitored the values of K and H as the system evolved. We observed

that the values of the Padé re-summation for X always remained close to those of A, while
the direct sum (12) diverged for most values of the energies considered. This implies that
the Padé sum approximates H, while the direct sum fails to do so.
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5. Approximate additional constants of motion

The normal-form approack can be used to generate approximate constants of motion
independent of the Hamiltonian. Discussions of these integrals of motion for resonant
and non-resonant cases are available in the literature; see for example Gustavson [3] and
KaluZa and Robnik [9]. For a two-degree of freedom system, the normal form X is an
integrable Hamiltonian by construction. With regard to our non-resonant K, both k; and
ho are constants of motion, while Ky can be used as a constant of motion for both the
resonant and non-resonant cases. Let IV = f be a constant of motion in the normal-form
coordinates (X, Z). We can transform I” to its image [, = f? in the ‘old’ coordinates
(&, Z). This inverse transformation can be carried out recursively by replacing (X, Z)
with (X, Z) and using the following equation [16] instead of (7):

k _ pketl = (n =11 " > S,
fn= n~t—§:mLm+1fn-m-—1 n>1 k=20 (13)
m=0 T :

where L; f is defined as in (7). By employing this procedure we obtain a perturbation series
for I, and, as is common with perturbation methods, the issue of its convergence needs to be
addressed. Generally speaking, perturbation series so obtained invariably require appropriate
re-summation to enlarge their domains of application. In section 4, we have used a two-
variate Padé approximation (in h; and A3) to re-sum the normal-form series for K. For
the double pendulum, I, is a function of four phase-space variables and a four-variate Padé
approximation, amongst other summation techniques, can be tried. Our main purpose here
is not to report on the optimal summation method for the function under consideration, but
to promote the spirit of re-summation to extend the applicability of the results obtained
from the normal-form approach. To this end, we consider a very simple-minded but general
method. We write [, as a perturbation series in the parameter «:

L=> ety (14)
m=0

where the coefficients of expansion, the #,, are the various perturbation terms independent
of €. We now work out a suitable [M, V] Padé approximation in the single variable ¢,
and then finally set ¢ = 1. It is clear that this technique is applicable to Hamiltonians of
arbitrary degrees of freedom, both resonant and non-resonant cases. Given the simplicity
of the method, the technique often works quite well and is worth trying.

As an application of this re-summation technique, we have transformed the non-resonant
constant of motion /; to a function of the (X, £) coordinates and then to another function
of the coordinates 6y, &;, P; and P, by inverting (5). The #,, are homogeneous polynomials
of order 2(m 4 1). We have generated terms up to #5 and have compared the results of the
direct sum of (14) and its [2, 3] Padé approximation in figures 4 and 5. The % and # terms
at the surface of section (#; = 0 and #; increasing) are given by

to = 1.0949565826,% + 0.479464 259 0P, — 0.846 525044 5P, P, 4+ 0.373 648 628 4 P;>
t; = 0.057496 661 90.P,* — 1.236 708 8716,% P,* + 0.460767 719 0P, 2 P>
—0.266900714 8P, P,? -+ 0.099085 853 40P, * + 0.372 807 083 46,*
+2.742758 2116, P, P, —0.3505109593 P> P, — 1.5022012926,2P;2.
The condition of increasing 6; at the surface of section is satisfied by the inequality
Py — 0.8 P cos(8) > 0, while P; is obtained in terms of & and P from the equation

H = E. A comparison of figures 2, 4 and 5 clearly shows that the Padé sum, as compared
with the direct sum, is valid for much wider areas of the surface of section. It should be
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Figure 4. The level corves on the swrface of section at E = 2 for the approximate constant of
motion fy = ki, obtained by directly summing the series (14), through #5 (¢ = 1). Only the top
part of the figure reproduces the exact results presented in figure 2. The curves were generated
for values of the direct sum in the range 0—150.

poiﬂted cut that although there is no large-scale chaos at E = 2, one finds locally chaotic
regions in finer analysis, implying that there are broken tori in the exact case. One such
region is the neighbourhood of the hyperbolic point 8; = 0.0, P, = 3.12 in figure 2.

6. Summary

We have presented a Birkhoff-Gustavson normal-form analysis of the double pendulum for a
better understanding of this familiar system. We have discussed the convergence problem of
this normal-form series and have shown that Pad€ summation provides meaningful results for
the energy. Using torus quantization and a two-variate diagonal Padé summation technique,
we have then presented semiclassical energies for a particular non-resonant case. These
energies provide a basis of comparison for attempts at properly quantizing this system. By
computing an approximate constant of motion using a different Padé summation technique,
we have illustrated that efforts expended to re-sum normal-form results extend their domains
of application.
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Appendix

Figure 5. The level curves on the surface of section at E = 2 for the approximate constant of
motion [y = hy, obtained from [2, 3] Padé approximation of (14). The curves were generated
for values of the approximant Iying in the range 0—4. The Padé approximant clearly reproduces
the exact results of figure 2 to a much better degree.

The [5, 5] Padé approximant [5] is given by P/Q, where

P =0.787 9460516502824 x 10" hy hp 4 0.887 983 380952 1573 x 10° hy A2

+0.868 093303 1524884 x 10° k3 k) + 0.459 8473125006416 x 1013 iy
+0.488 668228 821 1359 x 10% k2 k2 — 0.842786098280772 1 x 10° A3 by
+0.671350232 191 4718 x 10* hp Y — 0.101 6635779833301 x 10* A 13
+0.749911027 7777487 x 10* h2 13 + 0.472 1827893523807 x 10° 43 iy
+0.238 849011614001 6 x 10° ha A7 -+ 0.134 353894754 7524 x 10° hf h?
+0.211859513 1304134 x 10% h h3 + 0.108 249 850066 533 1 x 10° 4] A3
+0.372927597022766 1 x 10° k3 Ay + 0.438 754245297 8782 % 10° b3 b}
—0.734 965356701 5062 x 10% k2 7 + 0.517339852355581 5 x 10° A3 7
+0.167 980710330 101 8 x 10% b3 h? + 0.462 8353294166022 x 10° A h}
+0.290273 191633 141 x 10° A3 h3 + 0.110 163023431 1032 x 10* A3 A3
+0.354 893920508 162 x 10% k3 h} + 0.785 126025772407 5 x 10° k3 1}
+0.790324 153533 5437 x 10° k5 b3 + 0.213 808 1559873179 x 10° 42
+0.170386 083297 2282 x 107 13 + 0.721296 0052823199 x 10' A}
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—0.298 207 786404 2052 x 1071 1 — 0.928 0640300704388 x 10™* k3
+0.146 386 082 151 4275 x 107 &} + 0132483352034 3917 x 107% k3
+0.335 845446587 1992 x 10" A} + hy + k2

0 = 1-+0.868 167580363 6278 x 10° hy hp + 0.494 9625275743528 x 10* Ay i2
—0.788 445313647 1446 x 10° k3 by + 0.834 7742937386135 x 10°A3 hy
—0.9823752522102055 x 10° b} k3 + 0.271707 2897793476 x 107! h3
-+0.409 017 163 808099 x 10° ky i} + 0.134 2899324443748 x 10° k2 K3
—0.252174933494 3805 x 10* 42 13 + 0.367779330301 1247 x 10° A3
+0.215 534619502923 1 x 10® hy A5 + 0.100737 977954382 1 x 10° 1 i?
—0.164 8545364626107 x 10* h} A2 + 0.513 681362 1352969 x 10° 43 13
-+0.238 387267928 8426 x 10~% i3 hy + 0.437 791755 6953324 x 10° k3 1}
~0.113613975764 5634 x 10° k2 A +0.144 833 6440393874 x 10*h} i}
+0.138 493967 300077 5 x 10" h3 h? + 0.389 967 734 747 687 4 x 10* B3}
+0.367 098 618 5899303 x 10* b3 A + 0.123312488 1929267 x 10% 13 3
+0.315 8773349184192 x 10?43 A + 0.775411341291 5402 x 10° b3 b}
+0.301 663 8902944108 x 10% 45 A3 + 0.764 093448624023 8 x 10 iy
+0.220064 491801 048 1 x 10° &, — 0.283 8818245954392 x 107! 12
+0.198 739766 336943 7 x 10% A3 4 0.197 587 685740593 6 x 10% A2
—0.109444 465828 3298 x 107243 + 0.123 816735 7159496 x 10~? 4}
+0.641 978 644 274061 6 x 10" A% +-0.701 5589300391536 x 1078 &3
+0.232 687 7826459447 x 10° 43
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